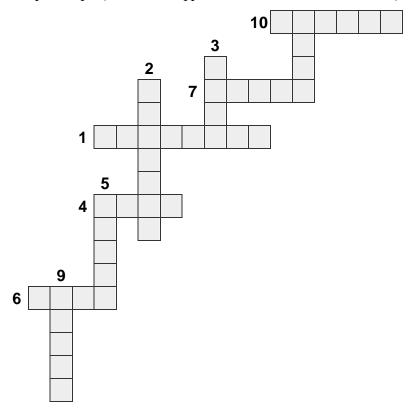
Муниципальный этап ВсОШ по химии в 2024-2025 учебном году Теоретический тур -7-8 класс


Время выполнения заданий 235 минут.

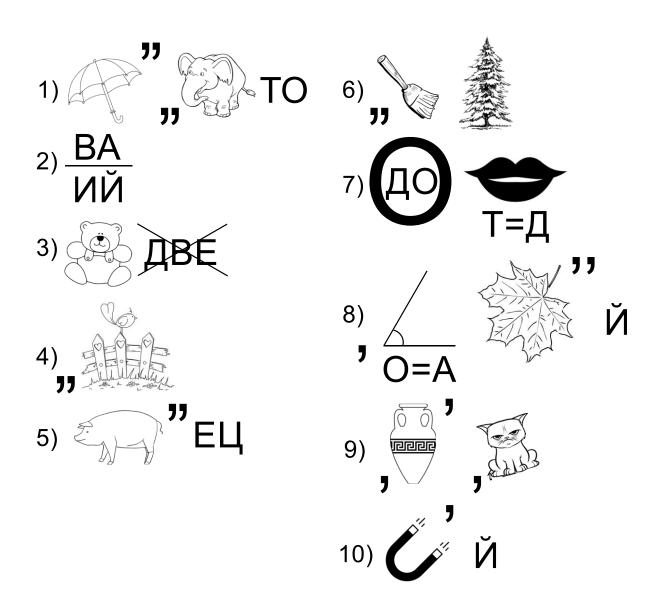
Максимальный первичный балл -100 (5 задач по 20 баллов).

Максимальный итоговый балл – 100.

Задача 8-1

Разгадайте кроссворд (здесь зашифрованы химические элементы).

По горизонтали.


- 1) Металл, обладающий самой высокой температурой плавления.
- 4) Основной компонент воздуха.
- 6) Оксид этого химического элемента в древнейшие временя использовался для изготовления желтой посуды. Так, возле Неаполя после извержения Везувия найден осколок жёлтого стекла, содержащий 1 % этого оксида и датируемый 79 годом н. э.
- 7) У этого атома химического элемента самое маленькое значение электроотрицательности среди атомов химических элементов 2 периода.
 - 10) Этот химический элементы олицетворяет Тони Старка из «Мстителей».

По вертикали.

- 2) Этот химический элемент входит в состав гарного газа.
- 3) Этот химический элемент образует простое вещество желто-зеленого цвета.
- 5) «Идеальный» атом химического элемента 3 периода.
- 8) Металл золотистого цвета, который, реагируя с водой, напоминает взрыв бомбы.
- 9) Самый дорогой металл VIII группы.

Задача 8-2

Расшифруйте химические элементы, представленные в ребусах.

Задача 8-3

Юный химик Вовочка учится готовить растворы с заданной концентрацией. Учитель дал ему задание приготовить 200 г раствора поваренной соли (хлорида натрия) с массовой долей соли 5%.

- 1) Сколько нужно взять воды и соли для приготовления такого раствора?
- В полученный раствор прилили 200 г воды.
- 2) Какой теперь станет массовая доля поваренной соли?

Далее Вовочка добавил в раствор (полученный в пункте 2) 10 г хлорида натрия.

Муниципальный этап ВсОШ по химии в 2024-2025 учебном году Теоретический тур – 7-8 класс

3) Вычислите массовую долю соли в конечном растворе, молярную концентрацию хлорида натрия и титр. Плотность полученного раствора 1,0332 г/мл.

Примечание:

1	Массовая доля (ω) — отношение массы растворенного вещества (m) к общей массе раствора (m_{p-p}) .	$\omega = \frac{m}{m_{\rm p-p}} \cdot 100\%$
2	Молярная концентрация ($C_{\rm M}$) — отношение количества растворенного вещества (n) к объему раствора (V), выраженному в литрах.	$C_{\mathrm{M}} = \frac{n}{V}$
3	Титр (T) — масса растворенного вещества (m) в 1 мл раствора.	$T = \frac{m}{V}$
4	Плотность (ρ) — отношение массы раствора (m) к его объему (V) .	$\rho = \frac{m}{V}$

Задача 8-4

Разность относительных атомных масс элементов A и Б равна 40, а отношение их масс равно двум.

- 1) Определите, о каких элементах идёт речь в задаче. Ответ подтвердите расчётом.
- 2) Запишите электронные формулы элементов А и Б. Укажите количество неспаренных электронов в основном состоянии для каждого из них.
- 3) Запишите формулу соединения, которое образуют элементы А и Б. Определите в нём вид химической связи.
- 4) Вычислите массовую долю более лёгкого элемента в соединении, которое образуют А и Б.

Задача 8-5

Сера вместе с фосфором является рекордсменом по количеству образуемых кислородсодержащих кислот. В одной из таких кислот, назовём ее кислотой A, массовая доля серы составляет 32,65%.

1) Вычислите молекулярную формулу кислоты А. Составьте структурную формулу кислоты А.

Помимо водорода и кислорода в кислотах серы могут содержаться и другие элементы.

2) Определите формулу кислоты вида HSO_3X , если известно, что её молярная масса $100\ {\rm г/моль}.$

Муниципальный этап ВсОШ по химии в 2024-2025 учебном году Теоретический тур — 7-8 класс

В ходе решения данной задачи давайте познакомимся ещё с двумя представителями кислот серы с формулами $H_2S_aO_y$ и $H_2S_aO_{y+4}$, в которых массовые доли серы составляют 56,14% и 35,955% соответственно.

3) Определите формулы кислот $H_2S_aO_y$ и $H_2S_aO_{y+4}$. Расставьте степени окисления элементов в кислоте $H_2S_aO_{y+4}$. Для кислоты $H_2S_aO_y$ составьте структурную формулу (возможно 2 правильных варианта – привести нужно только 1).